[兰州学生网兰州教育考试新闻]

中考数学常见六种分类讨论思想分别是什么

编辑:张嘉嘉 作者:佚名 出处:兰州学生网 添加:2016-8-29 字体:[ ] 纠错 评论

分类讨论思想是指当被研究的问题存在一些不确定的因素,无法用统一的方法或结论给出统一的表述时,按可能出现的所有情况来分别讨论,得出各种情况下相应的结论,分类讨论思想有利于学会完整地考虑问题,化整为零地解决问题。

分类讨论思想常见的六种类型:

1、方程:

若含有字母系数的方程有实数根时,要考虑二次项系数是否等于0,进行分类讨论。

2、等腰三角形:

如果等腰三角形给出两条边求第三条边或给出一角求另外两角时,要考虑所给的边是腰还是底边,所给出的角是顶角还是底角分类解决。

典型例题1:

解题反思: (1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.

(2)此题还考查了平行四边形的性质和应用,以及待定系数法求函数解析式的方法,要熟练掌握.

(3)此题还考查了直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.

3、直角三角形:

在直角三角形中给出两边的长度,确定第三边时,若没有指明直角边和斜边,要注意分情况进行讨论(分类讨论),然后利用勾股定理即可求解。

4、相似三角形:

如果题目中出现两个三角形相似,需要讨论各边的对应关系;若出现位似,则考虑两个图形在位似中心的同旁或两旁两种情况讨论。

典型例题2:

解题反思:

本题主要考查了勾股定理、相似三角形的判定和性质、列函数解析式、求二次函数的最值,综合性强,能根据已知条件把所需线段用含t的代数式表示来,灵活用用三角形的性质和判定是解决问题的关键,要注意分类思想、方程思想的应用.

5、一次函数:

已知一次函数与坐标轴围成的三角形的面积,求k的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函数与一次函数交点个数,常分一、三象限或二、四象限两种情况讨论。

6、圆:

圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种情况讨论。

(责任编辑:张嘉嘉 纠错)

考试动态热门